A comparison of climate change simulations produced by two GFDL coupled climate models
نویسندگان
چکیده
The transient responses of two versions of the Geophysical Fluid Dynamics Laboratory (GFDL) coupled climate model to a climate change forcing scenario are examined. The same computer codes were used to construct the atmosphere, ocean, sea ice and land surface components of the two models, and they employ the same types of sub-grid-scale parameterization schemes. The two model versions differ primarily, but not solely, in their spatial resolution. Comparisons are made of results from six coarse-resolution R15 climate change experiments and three medium-resolution R30 experiments in which levels of greenhouse gases (GHGs) and sulfate aerosols are specified to change over time. The two model versions yield similar global mean surface air temperature responses until the second half of the 21st century, after which the R15 model exhibits a somewhat larger response. Polar amplification of the Northern Hemisphere’s warming signal is more pronounced in the R15 model, in part due to the R15’s cooler control climate, which allows for larger snow and ice albedo positive feedbacks. Both models project a substantial weakening of the North Atlantic overturning circulation and a large reduction in the volume of Arctic sea ice to occur in the 21st century. Relative to their respective control integrations, there is a greater reduction of Arctic sea ice in the R15 experiments than in the R30 simulations as the climate system warms. The globally averaged annual mean precipitation rate is simulated to increase over time, with both model versions projecting an increase of about 8% to occur by the decade of the 2080s. While the global mean precipitation response is quite similar in the two models, regional differences exist, with the R30 model displaying larger increases in equatorial regions. D 2003 Elsevier Science B.V. All rights reserved.
منابع مشابه
GFDL’s CM2 Global Coupled Climate Models. Part IV: Idealized Climate Response
The climate response to idealized changes in the atmospheric CO2 concentration by the new GFDL climate model (CM2) is documented. This new model is very different from earlier GFDL models in its parameterizations of subgrid-scale physical processes, numerical algorithms, and resolution. The model was constructed to be useful for both seasonal-to-interannual predictions and climate change resear...
متن کاملOn the Climatic Impact of Ocean Circulation
Integrations of coupled climate models with mixed-layer and fixed-current ocean components are used to explore the climatic response to varying magnitudes of ocean circulation. Four mixed-layer ocean experiments without ocean heat transports are performed using two different atmosphere–land components—the new GFDL AM2 and the GFDL Manabe Climate Model (MCM)—and two different sea ice components,...
متن کاملDo General Circulation Models Underestimate the Natural Variability in the Arctic Climate?
The authors examine the natural variability of the arctic climate system simulated by two very different models: the Geophysical Fluid Dynamics Laboratory (GFDL) global climate model, and an area-averaged model of the arctic atmosphere–sea ice–upper-ocean system called the polar cap climate model, the PCCM. A 1000-yr integration of the PCCM is performed in which the model is driven by a prescri...
متن کاملSimulated Climate and Climate Change in the GFDL CM2.5 High-Resolution Coupled Climate Model
The authors present results for simulated climate and climate change from a newly developed highresolution global climate model [Geophysical Fluid Dynamics Laboratory Climate Model version 2.5 (GFDL CM2.5)]. The GFDL CM2.5 has an atmospheric resolution of approximately 50 km in the horizontal, with 32 vertical levels. The horizontal resolution in the ocean ranges from 28 km in the tropics to 8 ...
متن کاملENSO Evolution and Teleconnections in IPCC’s Twentieth-Century Climate Simulations: Realistic Representation?
This study focuses on the assessment of the spatiotemporal structure of ENSO variability and its winter climate teleconnections to North America in the Intergovernmental Panel on Climate Change’s (IPCC) Fourth Assessment Report (AR4) simulations of twentieth-century climate. The 1950–99 period simulations of six IPCC models are analyzed in an effort to benchmark models in the simulation of this...
متن کامل